If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-100=162
We move all terms to the left:
2x^2-100-(162)=0
We add all the numbers together, and all the variables
2x^2-262=0
a = 2; b = 0; c = -262;
Δ = b2-4ac
Δ = 02-4·2·(-262)
Δ = 2096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2096}=\sqrt{16*131}=\sqrt{16}*\sqrt{131}=4\sqrt{131}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{131}}{2*2}=\frac{0-4\sqrt{131}}{4} =-\frac{4\sqrt{131}}{4} =-\sqrt{131} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{131}}{2*2}=\frac{0+4\sqrt{131}}{4} =\frac{4\sqrt{131}}{4} =\sqrt{131} $
| -8n+4(4+5n)=-6n-14 | | 24x-13-18x=3(2x-5)+2 | | 8x+15=62 | | p/13+16=18 | | X/5-x/2=-9 | | w+13/2=18 | | 4(2x-5)-7x=9 | | 5y-10y=0 | | 2u+9=13 | | N/4+n/5=9 | | 4^{x+4}=5^{2x+5} | | 3c+15=3-9 | | 4(3r+5)=-8(2r+1) | | 3(2x-5)+4(3x+6)=45 | | 16m-13m=25 | | 8a-7a=29 | | 21x-1=18x+6 | | x/6+x/4=-30 | | 4(2a-5)-7a=9 | | 42=48-u | | 4x−3x=12 | | -83=2w+32-18 | | 11x+5x-1=-36+65x | | h+9h=20 | | d+3/–3=8 | | (-4)x=1024 | | d+3–3=8 | | 8.7/7.5=x/5 | | 4a-3=7a+3 | | 8x-4.9x=-94.4 | | 11x5x-1=-36+65X | | -3=u/2-7 |